ACE C18-PFP - Combines the C18 and pentafluorophenyl (PFP) functionalities - Hydrophobicity, stability and low bleed characteristics of a C18 and the π - π interactions, dipole-dipole interactions and shape selectivity of a PFP phase - Unique selectivity phase can separate mixtures that cannot be readily separated by either phase alone ## **PHASE SPECIFICATIONS** | Phase | USP Listing | Functional
group | Endcapped | Particle
size (µm) | Pore size (Å) | Surface area
(m²/g) | Carbon
load (%) | pH range | 100% aqueous
compatibility | |---------|-------------|---|-----------|-----------------------|---------------|------------------------|--------------------|----------|-------------------------------| | C18-PFP | 11 | Octadecyl
with integral
PFP group | Yes | 1.7, 2, 3, 5, 10 | 100 | 300 | 14.3 | 2–8 | Yes | ## **RECOMMENDED APPLICATIONS** - Analytes with π -bonding, conjugated systems and electron donating groups such as phenols, aromatic ethers and amines - Analytes with proton donor groups - Structural isomers, steroids, substituted aromatics and taxanes - Applications where C18 does not provide adequate separation - Applications where conventional PFP phases provide insufficient retention, poor stability or significant bleed ## THE IMPORTANCE OF MAINTAINING HYDROPHOBICITY DURING MULTI-MODE INTERACTIONS