The Effect of Excipient Load on Drug Product Stability

Garry Scrivens Science of Stability Conference Philadelphia, US September 2022 garry.scrivens@pfizer.com

Pfizer

Presentation Outline

- Lower API loads almost always have worse stability than corresponding higher API load formulations
- A key part of drug product development is the selection of the composition (excipient compatibility), API particle size specification and API load
- Products often require a range of API loads to meet clinical and commercial demands
- This presentation provides an update on the 'Contact Surface Area' model (SOS 2019) which helps to understand, model and predict the effects of:
 - API load
 - Particle size
 - Product composition
- Application to N-nitrosamines as *degradation products* (SOS 2021)
- Factors affecting the rate and extent of nitrosamine formation

Background (Recap of SOS 2019 – Binary API: Excipient Mixtures)

Product A: Dicalcium Phosphate (DCP)

Product C : Avicel (MCC)

Degradation at 70°C/75%RH

Degradation at 80°C/40%RH

Degradation at 50°C/30%RH

Modelling the Degradation – Drug Load Relationship

• Degradation products are measured as %API

%Deg = <u>Amount of Deg</u> x 100 Amount of API

• Maybe the amount of Deg is constant, and only the denominator is changing?

"Contact Surface Area" Model

%Deg is proportional to the amount of API in contact with excipient

Surface area of the excipient in a sample Total surface area of the sample

Divide top and bottom of this equation by S_E to give:

$$Deg \propto \frac{1 - L}{R_{ASA} L + 1 - L}$$

Deg =
$$Deg_{Limit} \times \left(\frac{1 - L}{R_{ASA} \cdot L + 1 - L}\right)$$

Two parameters ($\text{Deg}_{\text{Limit}}$ and R_{ASA}) need to be fitted to data (determined experimentally)

$$(1 - L) \times S_{E}$$

$$(L \times S_{API}) + (1 - L) \times S_{E}$$

$$(Available'$$
 'Available' surface area of area of excipient in

API in sample

=

L is drug load (between 0 and 1)

sample

 S_E and S_{API} are the 'available' surface areas of the excipient and API; measured in units of m²/g.

 R_{ASA} = ratio of 'available' surface areas (S_{API}/S_E)

```
Deg<sub>Limit</sub> = Degradation at the
lowest possible drug load (i.e.
maximum degradation)
```


Data from at least 2 different drug loads are required to generate the curve because there are 2 parameters (Deg_{Limit} and R_{ASA}) that need to be fitted

7

Case Studies: Applications of Model A) To Multicomponent Formulations

Product D

ASAP Data obtained for development lots:

API Load (mg)	MCC (mg)	Lactose (mg)	Glycerol Dibehenate (mg)	PVP (mg)	Capsule Size	API Surface Areas (m²/g) by BET
48	13	13	4.0	2.4	4	0.283 & 1.097
80	21	21	6.7	4.0	3	0.500
160	43	43	13.3	8.0	1	0.283 & 1.097
80	113	113	16.7	10.0	0	0.147, 0.223, 0.626 & 0.878
160	35	35	12.5	7.5	0	0.147, 0.223, 0.626 & 0.878
	ر 1:	1	5:	3		

Objective: to understand and predict product shelf life: Dimer is key deg Different drug loads (& different excipient ratios); capsule formulation Different API particle sizes (surface areas) Different storage conditions (Temperature and Humidity)

Effect of Capsule Size & Fill Weight

Even though the capsule shell is not mixed in with the other formulation components, the blend:capsule ratio appears to affect the stability.

Aside: Degradation Curve Shapes

Non-linear degradation curves usually approximate well to 'first order' curve 1^{st} order = consistent with depleting reactant (observed rate ∞ amount of reactant remaining)

Contact Surface Area Model:

Extension to Multicomponent Formulations (proposed in SOS 2019)

 Deg =
 Deg_{Limit,E1} x
 Surface area of Excipient 1 in sample

 Total surface area of the sample

 +
 Deg_{Limit,E2} x

 Surface area of Excipient 2 in sample

 Total surface area of the sample

 Total surface area of Excipient 2 in sample

+ Etc.

Contact Surface Area Model: Extension to Multicomponent Formulations

In this model, each excipient has 2 fitted parameters "S" and "D"

"S" : loosely based on its <u>S</u>urface area. Perhaps better thought of as its 'reactive surface area' or 'available surface area'. "D" : based on the <u>D</u>egradation extent. This is the degradation extent at maximum dilution of the API in the excipient:

'L' is the loading for each excipient (units e.g. mass)

The loading for the capsule shell could be input as either mass or surface area (based on geometry/dimensions of the shell):

Capsule Size	Mass of Gelatin (mg)	Surface area of Shell (mm ²)
0	96	500
1	76	404
3	48	278
4	38	227

API surface area input data: BET or Laser Diffraction? Both techniques can output volume specific surface area (m²/cm³)

1/D[v,0.1] worked almost as well

- Degradation model fit better using laser diffraction surface areas
- Volume specific surface area is not a default output from laser diffraction software, but using 1/D[3,2] as the surface area gives identical model.

The full model, taking into account, T, RH, time, API particle size, formulation composition and capsule shell size:

External validation of the model using paediatric formulations made later:

Coupling the model to packaging simulation to make real-world predictions:

Temp /ºC	30	Dose Strength	30
%RH	75	Volume specific surface area, Sx (m2/cm3)	0.4
Duration (Months)	60	Drug Load %w/w (mgA)	37.5
Initial Water activity	0.36	Initial total Oligs (%)	0.051
Initial Water Content (% w/w)		Initial PF-06757444 (%)	0.05
Inner Packaging	60 cc Bottle	Capsule Size	4
Outer Packaging	None	Water Activity of Shell	0.36
Unit count (e.g. 1 for blister)	28	Water Activity of Contents	0.36
Grams of desiccant (in inner packaging)	1	Capsule Shell Loading Metric	Capsule Surface Area (mm2)

Objective: to understand and predict product shelf life as a function of:

- Time
- Temperature
- RH
- Drug Load
- API particle size
- Solid Fraction

3 Main Degs: Dimer, Diol, Pruv Adduct Model was built for Total Degs, Dimer, Diol, Pruv Adduct and RRT 3.4 Essentially the **same model** used for Product D was used for Product E:

Deg(t) = Plateau Level *
$$[1 - \exp(-(A \cdot \exp(-E_a/RT + B \cdot RH) \cdot t)]$$

Plateau Level = $\exp(LnA_p - E_{a,p}/RT + B_p,RH) * S_{DS} * (1 - L) / (L * S_{DS} / S_p + 1 - L) * SE$
Where SE is the solid fraction.
Contact Surface Area Model Component

Correcting for SF in this way brought about a minor improvement to model fit

The rate constant, k, is dependent on temperature and humidity in the usual 'ASAP' way:

$$= A. \exp\left(\frac{-E_A}{RT} + B. RH\right)$$

k

ASAP study with conditions at:

- 50°C/30%RH
- 50°C/75%RH
- 60°C/40%RH
- 60°C/50%RH
- •70°C/10%RH

Pfizer

...Benefits of developing a model

Understanding the Effects of Drug Load and API Particle Size

Coupling to packaging simulation to predict long-term packaged stability

Objective: to understand and predict product shelf life as a function of:

- Time
- Temperature
- RH
- Three Different Formulations
 - One formulation at 3 different drug loads (2.5%, 5% and 10%)
- 4 Main Degs
- ASAP data at 50°C/75%RH, 60°C/40%RH, 70°C/10%RH, 70°C/40%RH and 70°C/75%RH
- Same model used again

Application to Nitrosamine Formation in Drug Products

- LC-MS-MS is needed to provide the necessary sensitivity and selectivity
- The data may be subject to noise as compared to other degradation products

Same Objective: Predict degradation levels as a function of formulation, storage conditions and time

Curve Shape What factors affect the rate and extent of nitrosation?

Curve Shape and Effect of Temperature: Product G

Example **measured** data from a batch of tablets with a 0.5% drug load

Model of effect of temperature across multiple batches

It is more important to understand the plateau level than the rate constant

Factors that Affect Plateau Level: Nitrite in Excipient Product G

- Note: Trace Methods Consider the error bars in both the horizontal and vertical axes
- Nitrite is generally <100% converted into NNA
- Nitrite levels may account for ~70% of variation in NNA levels

Factors that Affect Plateau Level: Drug Load Product G

Factors that Affect Plateau Level: Drug Load Product G

Same data presented three different ways:

- If contact surface area model is applicable, then this provides a means of predicting NNA levels for excipients with different particles sizes (surface areas) ["Assuming All Other Factors Remain the Same"].
- Variability in excipient particle size may account for some causes of the imperfect correlation between NNA level and nitrite levels.

Factors that Affect Plateau Level: Drug Load (Aside) Product G

Predicting NNA Levels for Different Formulation Compositions Product G

Can the model account for the levels observed in binary and ternary blends at different drug loads?

Example Data Input to Model

Composition	Informatio	n							
API	MCC	Prosolv	DCP	Lactose	Kollidon	Pruv	Hyqual	sum	
*	~	~	~	-	· ·		-	-	NNA ng / g blend
10	90							100	1170
5	95							100	1020
1	99							100	814
1	99							100	794
1	99							100	768
1	99							100	685
1.71	132.2		66.1					200.01	283
1.71	132.2			66.1				200.01	1094
1.7	132.2							133.9	1168
1.7	132.2				6			139.9	782
1.7	132.2					4		137.9	2402
1.7	132.2						2	135.9	1762
1		99						100	148
1.7		132.2	66.1					200	717
1.7		132.2		66.1				200	1754
1.7		132.2						133.9	764
1.7		132.2			6			139.9	1340
1.7		132.2				4		137.9	865
1.7		132.2					2	135.9	1921
1			99					100	21
10				90				100	1703
5				95				100	1550
1				99				100	1053
100								100	994

■ Tertiary With Prosolv ▲ Binary: DCP + Binary: MCC ★ Binary: Lactose − Tertiary With Lactose Possibility that in certain excipient combinations, one excipient (e.g. an acidic excipient?) might 'activate' the nitrite present in another excipient?

Predicting NNA Levels for Different Formulation Compositions Product G

Later multicomposite blends were made comprising 5 excipients. By way of external validation, the model was used to predict their NNA levels:

		mg Per unit								
		API	MCC	E2	DCP	Lactose	E5	E6	E7	Sum
Alt Supplier MCC (1% Binary Blend		1	99							100
	Blend 1 (worst case)	5		60.7		30.2	3.01		1	99.91
	Blend 2 (worst case)	5.02	60.7			30.3	2.99		1	100.01
	Blend 1 (best case)	5.01	60.7		30.3		2.99		1	100
	Blend 2 (best case)	5.01	60		30		2.99	2		100
	Blend 3 (best case)	5.01		60.7	30.29		3		1	100
	Blend 4 (best case)	5		60	30		3	2		100

Predicting NNA Levels for Different Formulation Compositions Product G

Recap of Contact Surface Area Model:

Each excipient requires 2 fitted parameters "S" and "D"

"S": loosely based on reactive / available <u>S</u>urface area. Also likely to be dependent on strength of interaction between excipient and the API. "D": based on the <u>D</u>egradation extent. This is the degradation extent at maximum dilution of the API in the excipient:

Contact surface area model

- Is the simplest model for predicting the stability of different formulations
- It has been found to be applicable to a broad range of products
- It can predict the effects of API particle size, excipient particle size, drug load and formulation composition "Assume All Other Factors Remain the Same"
- It has been extended to predict different solid fractions and capsule sizes
- It can be used in combination with ASAP models for T and RH, to provide a comprehensive drug product stability model
- Exceptions to the model may occur. Further investigations into these may identify inter-particle interactions, e.g. 'activation' of nitrite in excipients

Formation of Nitrosamines in Drug Product

- Plateauing has been observed
- Plateau Levels under elevated temperatures are generally in good agreement with plateau levels obtained under longterm storage
- Nitrite levels in excipient may provide a good starting point to estimating nitrosamine level
- <100% conversion of nitrite may be observed
- Correlation requires further refinement: consideration of other factors such as drug load and particle size

Thank You for Your Attention

Acknowledgements

Drew Gibson Veriche Minall John Agbike Shrina Bhagat Aurelia Maulny Sam Terry Lauren Mackay Miroslav Suruzhon Alastair Coupe Sally Grieb Garry O'Connor Richard Barber

