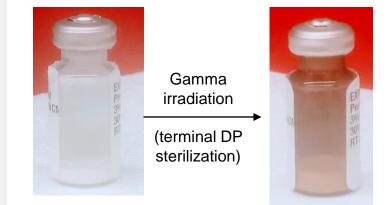
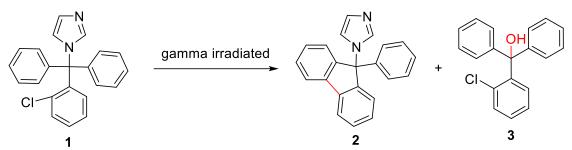

Degradation of Drug Products During Terminal Sterilization by Gamma-Irradiation Rowan Meador

Gamma Irradiation Basics

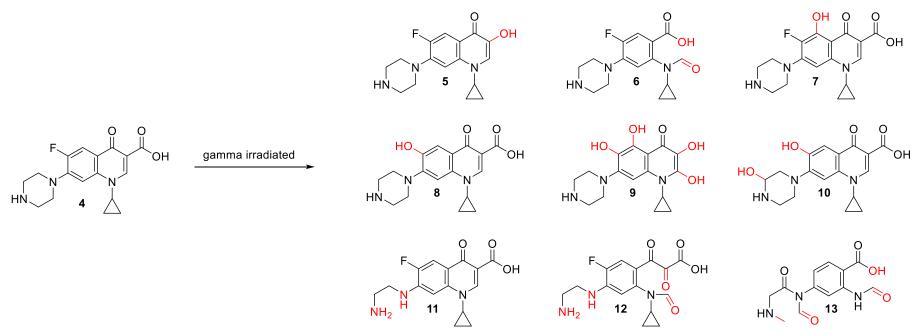
- First appeared in *British Pharmacopeia* in 1963 and in the *United States Pharmacopeia* in 1965
- Gamma irradiation is a method of sterilization for pharmaceuticals typically using ⁶⁰Co source
- Has high penetration, is isothermal, and no additional chemical residues


Hasanain, F.; Guenther, K.; Mullett, W. M.; Craven, E. Gamma Sterilization of Pharmaceuticals—A Review of the Irradiation of Excipients, Active Pharmaceutical Ingredients, and Final Drug Product Formulations. *PDA Journal of Pharmaceutical Science and Technology* **2014**, *68* (2), 113. DOI: 10.5731/pdajpst.2014.00955.

Sandle, T. 4 - Gamma radiation. In Sterility, Sterilisation and Sterility Assurance for Pharmaceuticals, Sandle, T. Ed.; Woodhead Publishing, 2013; pp 55-68. https://doi.org/10.1533/9781908818638.55

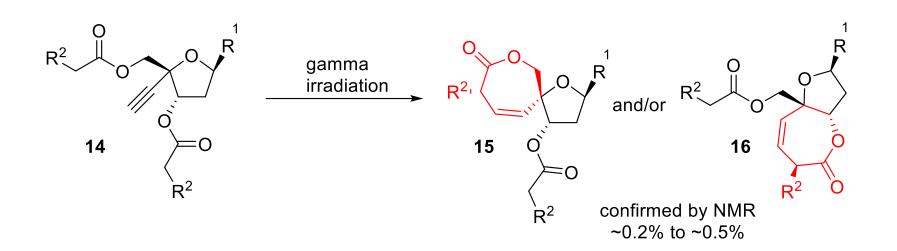

Gamma Irradiation of LAI Drug Products for Terminal Sterilization

Potential formation of novel impurities

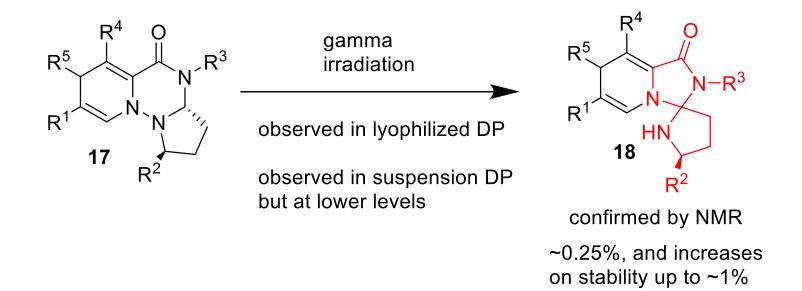

- Gamma irradiation is on of the few options available for terminal sterilization of LAI DP
 - Versus filtration, autoclaving, etc.
- Degradation of API and excipients can be induced by gamma rays, but is difficult to anticipate / predict
- The formation of novel impurities could impact analytical methods and pose risks regarding control of mutagenic impurities per ICH M7
- Understanding the impact of gamma irradiation on small molecules could aid early development of drug products

Gamma Irradiation Literature Examples

Marciniec, B.; Dettlaff, K.; Naskrent, M. Influence of ionising irradiation on clotrimazole in the solid state. *Journal of Pharmaceutical and Biomedical Analysis* **2009**, *50* (4), 675-678. DOI: <u>https://doi.org/10.1016/j.jpba.2008.032</u>.

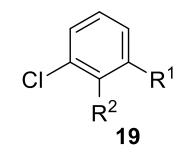


Tegze, A.; Sági, G.; Kovács, K.; Tóth, T.; Takács, E.; Wojnárovits, L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. *Radiation Physics and Chemistry* **2019**, *158*, 68-75. DOI: <u>https://doi.org/10.1016/j.radphyschem.2019.01.025</u>.


GSK

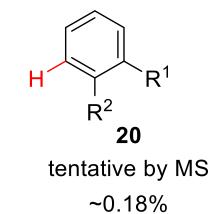
Lactone formation

Suspension drug product

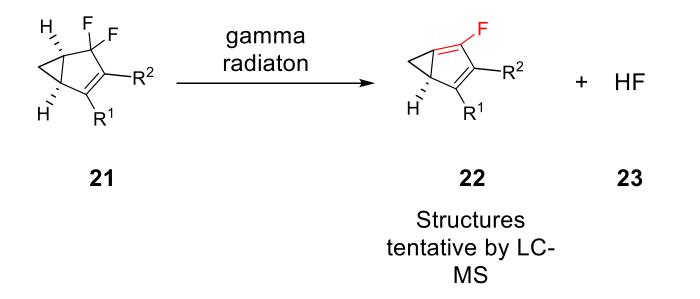


N-N Bond Cleavage and Formation of Spirocyclic Ring Lyophilized drug product

- Impurity increases on stability
- non-gamma material does not form this impurity on stability


Dehalogenation Lyophilized drug product

gamma irradiation


observed in lyophilized DP

observed in suspension DP but at lower levels

Dehalogenation

Suspension drug product

• Co-elution of impurities made quantification difficult

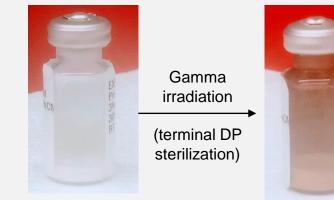
GSK

Multiple Compounds with Same Substructure

Suspension drug product

Structures tentative by LC-MS

- Co-elution of impurities made quantification difficult
- Some impurities may be formed during API milling, and not gamma-irradiation


• Gamma irradiation is a useful method for terminal sterilization

Further studies are needed in order to understand and predict the kinds of

- Versus filtration, autoclaving, etc.
- Gamma irradiation can generate unique products

transformations gamma irradiation can produce

- These products can be difficult to predict
- Can affect different types of drug products
 - Suspension versus lyophilized

- Acknowledgements

- Aston Liu
- Ernie Schubert
- Laura Adduci
- Sonya Kennedy-Gabb
- John Campbell
- Simon Hicks
- Ed Carenzo
- Nadine Snyder
- Mike Morris
- Tim Brown
- Moses Wainaina

- Zeinab Khorasanirad
- Janine Keller
- Rattavut Teerakapibal
- Kavitha Jakka
- Lisa Housel
- Ivy Ma
- Greg Gilmartin
- Gossett Campbell
- Martin Gartland
- Mark Johnson
- Paul Benn

- Amanda Giddings
- Mat Whiting
- Sabine Fenner
- Geraldine Whelan
- Abbie Williams
- Ian Andrews
- John Woodard

Thank you! Any questions?

- Hasanain, F.; Guenther, K.; Mullett, W. M.; Craven, E. Gamma Sterilization of Pharmaceuticals—A Review of the Irradiation of Excipients, Active Pharmaceutical Ingredients, and Final Drug Product Formulations. *PDA Journal of Pharmaceutical Science and Technology* 2014, 68 (2), 113. DOI: 10.5731/pdajpst.2014.00955.
- Sandle, T. 4 Gamma radiation. In Sterility, Sterilisation and Sterility Assurance for Pharmaceuticals, Sandle, T. Ed.; Woodhead Publishing, 2013; pp 55-68. <u>https://doi.org/10.1533/9781908818638.55</u>
- Marciniec, B.; Dettlaff, K.; Naskrent, M. Influence of ionising irradiation on clotrimazole in the solid state. *Journal of Pharmaceutical and Biomedical Analysis* 2009, *50* (4), 675-678. DOI: <u>https://doi.org/10.1016/j.jpba.2008.08.032</u>.
- Tegze, A.; Sági, G.; Kovács, K.; Tóth, T.; Takács, E.; Wojnárovits, L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. *Radiation Physics* and Chemistry 2019, 158, 68-75. DOI: <u>https://doi.org/10.1016/j.radphyschem.2019.01.025</u>.