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Methods of predicting the uncertainty in ambient shelf-life 
(probability of passing a specification limit at a given storage 
time) from accelerated data using a two-step process 
(estimation of isoconversion then Arrhenius fitting) were 
evaluated. An extrema method is shown to provide a 
reasonable estimation of the isoconversion regression interval 
in the general case of a constant relative standard deviation in 
degradant levels, where there is a minimum standard deviation 
equal to the limit of detection.  The rate distribution used for 
the Arrhenius calculation was determined either from a 
distribution of isoconversion times or from a distribution of 
degradant values at the means of the isoconversion times.  
Least-squares fitting to the Arrhenius equation in both linear 
and exponential forms were calculated. The non-linear fitting 
weights higher temperature points more heavily than the linear 
fitting and therefore carries greater scientific risk when there is 
non-Arrhenius behavior. Since the linear fitting is also less 
computationally intensive, it is preferred over non-linear fitting, 
even with weighting of the latter. 

 

INTRODUCTION 
In Part I of this series, we examined the ability of different calculation 
methods to accurately determine shelf-life at ambient conditions 
when extrapolating degradation behavior from high temperature 
(accelerated) conditions1.  We focused on somewhat complex, but 
common, kinetics, where drug degradation involved both primary 
and secondary degradation processes.  In that paper, it was shown 
that in order to achieve accurate projections in the majority of cases, 
it was necessary to use an isoconversion approach.  In this process, 
the degradation as a function of time at each temperature was used 
to estimate the time to reach the specification limit.  These times, in 
turn, were used to determine isoconversion rates, which were used 
with the Arrhenius equation to estimate ambient shelf-life (time to 
reach the specification limit).  While instances that follow simple 
kinetics could use alternative methods for calculation of the ambient 
behavior (i.e., bypass the intermediate calculation of the 
isoconversion time), assumptions of simple kinetics are not justified 
in a large percentage of cases.  Estimations using an isoconversion 
rate calculation will be as accurate as the alternative methods when 
degradation kinetics are simple, but significantly superior when they 
are not. 

In the present paper, we examine different methods for calculating 
probability distributions for ambient behavior based on model 
projections from accelerated conditions.  Unlike the case with 
accuracy using model data, where there is an objective assessment 
of how close an answer is to the true value, we can only compare 
different methods to each other based on scientific and statistical 
judgment. We hope that a calculated probability of passing with a 
given model data set will correspond to the actual likelihood that 
such a system will indeed pass. Even if a statistical model could be 
made that were perfect in its predictability, in practice, the ambient 
conditions are subject to variability themselves which complicate the 
way in which the models are used.  These sources of ambient 
variability include the following: analytical errors associated with the 
measurements, lot-to-lot variability, and the range of actual storage 
conditions nominally labeled the same.  It should be noted that the 
ICH guidelines2 allow for ±2°C and ±5%RH.  This means that for an 
average solid drug product having an activation energy of 29 
kcal/mol (121 kJ/mol) and a B value (i.e., relative humidity, RH, 
sensitivity) of 0.04, the rate at 28°C/60%RH would be 2.7 times 
slower (shelf-life 2.7 times longer) than the rate at 32°C/70%RH 

(open), yet both would still be within the guidelines for controlled 
30°C/65%RH ICH storage conditions. 

In Part I, we discussed the role that RH plays in determining reaction 
rates for solids.  The RH dependence can be complex, since it 
depends on the packaging of the material and is therefore likely to 
change with time3.  As with the first paper, we again make the 
simplifying assumption that the RH remains constant with the 
implication that different statistical treatments will be similar, though 
more complex, when considering RH changes as a function of time.  
In the present paper, we also make the simplifying assumption that 
the actual temperatures and times at the accelerated conditions are 
exact, with all the uncertainties condensed into the degradation 
measurements. 

Determining the distribution of model outcomes involves a 
propagation of errors beginning with the uncertainty estimates for 
the individual data points (amount of degradant formed or loss of 
active).  In an ideal world, repeated measurements would be made 
at each time, and each of those individual points would be used in 
the calculations.  In practice, a sufficient number of repeats are 
seldom carried out to allow use of this procedure. It is therefore 
necessary to assume some distribution of error in the degradant or 
active level about the time points used in an accelerated study.  

While early work in accelerated aging mostly involved calculations 
based on a loss of potency4-8, current shelf-life determinations for 
most drug substances and drug products are instead limited by 
formation of degradation products.  Potency variability in many 
dosage forms is dominated by content uniformity (variability) of the 
dosage forms themselves (e.g., tablets, capsules).  As such, the 
error bars in the values often represent fixed errors.  With purity 
analyses, the precision of degradant levels is more often limited by 
sample preparation and measurement than by the samples 
themselves.  In this case an assumption of a constant relative 
standard deviation (RSD) is more accurate. This assumption is 
necessarily tempered by a minimal error bounded by a limit of 
detection (LOD). We therefore make the assumption, based on the 
most common scientific situation, that the error bars for degradant 
levels at each time point are represented by a normal distribution 
centered at the entered value with a standard deviation being the 
larger of the RSD or LOD. Since this is a more difficult statistical 
situation than an assumption of a constant error, it is likely that any 
methods that are appropriate for such cases will also apply to the 
simpler case of a constant error or having no minimum error. 

The first step in shelf-life determination is calculating the distribution 
of rates at each condition based on a distribution of isoconversion 
times.  We can consider two sources of error in fitting the degradant 
versus time data. The first is the standard error of the fit, which 
measures the variance from the best fit line. Determining this value 
is complicated when the maximum of the RSD and the LOD is used 
as an estimate of the uncertainty of the degradant at each time, 
rather than true individual measurements. The second source of 
error comes from the range of best fit lines than can be produced 
based on different samples of the population. This is the error of the 
mean or the confidence interval (CI).  If all degradant values are 
independent, normal and have the same standard deviation (σ) the 
confidence interval can be expressed in closed form (Equation 1)9: 

ܫܥ = ට
ଵ

௡
+

ሺௗ೚ିௗതሻమ

∑ሺௗ೔ିௗതሻమ (1) 

where d0 is one of the measured points, d  is the average value for 
the degradant level, and n is the number of points. If a large number 
of points are sampled, the estimate of the error is zero at the mean 
value of d, since CI is an estimate of the error of the mean.  When 
estimating the uncertainty in a point not measured, the error at that 
point will be at least as large as the error introduced from the noise 
in the data as reflected in the regression interval, RI, shown in 
Equation 29 



2 
 

ܫܴ = ඨ1ߪ + ଵ

௡
+

൫ௗ೛ିௗത൯
మ

∑ሺௗ೔ିௗതሻమ                          (2) 

where dp represents a new point whose value we are predicting. 
This value will still be a minimum at the mean, but the minimum for 
very large numbers of samples is now the estimate of the standard 
deviation σ. As dp is moved further from the mean, the values of the 
CI and RI converge. 

In the present paper, we examine three methods for calculating the 
uncertainty in isoconversion.  In the first method, we use a stochastic 
(Monte-Carlo) procedure10.   This method estimates the CI; it does 
not provide an estimate of the RI. In this method, degradant values 
(assumed to be normally distributed) are sampled at each time point 
and used to produce a best fit line. Repeated sampling produces a 
distribution of possible values for the isoconversion time.  The 
resulting isoconversion distribution will not, in general, be normally 
distributed. One potential approach to working with such non-normal 
distributions can be derived from the fact that the distribution in 
degradant (or potency) at any specific time can be calculated and 
will be normal. At the “true mean” isoconversion time (i.e., the 
average value when an infinite number of observations are made), 
a normal distribution of degradant levels can be determined.  This 
distribution can be converted to a distribution of rates by dividing 
each value of the degradant distribution by the mean isoconversion 
time.  

In the second estimation process, a non-stochastic method is used.  
Rather than use random points, representative points are used, 
specifically at plus and minus one standard deviation.  This will 
generate 2n fits to the data (where n is the number of time points 
used).  This will in turn generate isoconversion times and rates 
corresponding to one standard deviation from a normal distribution 
(or the 68% confidence interval for a non-normal distribution).  
Again, this is an estimate of the CI, rather than the RI. The results 
obtained by this method are identical to the previous method except 
that only the values at plus or minus one standard deviation are 
determined, rather than a complete distribution. As with the 
stochastic approach, the distribution in isoconversion times will not 
in general be normal; however, the distribution in degradant 
(potency) levels at the mean isoconversion value will be.   

The third method for estimation is an “extrema method”, which is 
similar to the non-stochastic method described above in that 
representative points at plus and minus one standard deviation are 
used to generate 2n lines.  The difference is that either the line to 
cross the specification limit corresponding to the minimum of the 2n 
isoconversion times is used to define a standard deviation for the 
isoconversion distribution (assumed to be normal about the mean) 
or the line to cross the mean isoconversion time corresponding to 
the maximum of 2n degradant values is used to define a standard 
deviation for the degradant distribution. While this is not a RI 
calculation, it does insure that predicted points do not have 
associated errors less than that of the measured values.  Likewise, 
the standard deviation estimated at the entered degradant/time 
points is close to the entered values. Figure 1 shows how the 
extrema method is used to estimate uncertainty in an example with 
two specification limits. 

 

 

 

 

 

 

 

 

 

Figure 1 

   

One of the methods of estimating the error in isoconversion 
involves using a one-sided extrema process illustrated in this 
figure.  In this case, the zero time point data (measured value of 
0.10) has an error bar (one standard deviation) of 0.01%, while 
the 14-day point (measured value of 0.40%) has an error bar of 
0.04% (i.e., both have a 10% relative standard deviation).  The 
no-error line to two specification limits (0.20 and 0.50%) is 
reached at 4.7 and 18.7 days, respectively.  Four extrema lines 
are generated from the error bars. The shortest time for an 
extrema line to hit the specification limits are at 3.8 and 16.4 
days for 0.20 and 0.50% degradant, respectively.  The error bars 
for the isoconversions are estimated (as a normal distribution) 
as the difference between the no-error isoconversion and the 
shortest time isoconversions, in this case, 0.9 and 2.3 days, 
respectively. 

Figure 2 

Comparison of rate distributions based on three-temperature 
(60, 70, 80°C) accelerated aging with a fixed relative standard 
deviation (RSD = 10%), minimum error (limit of detection, LOD 
= 0.02%) and an activation energy of 25 kcal/mol (104.67 
kJ/mol).   A single non-zero time point (at 10 days) was used at 
each temperature.  Degradant values were chosen such that the 
60°C point exactly equaled the specification limit in each case.  
Distributions were calculated for two specification limits to 
project to 25°C rates: a) using an isoconversion time 
distribution with a 0.2% specification limit; b) using an 
isoconversion time distribution with a 0.5% specification limit; 
c) using a normal degradant distribution about the specification 
limit of 0.2% at the zero-error isoconversion time; d) using a 
normal degradant distribution about a specification limit of 
0.5% at the zero-error isoconversion time. 

 

With error estimates for the isoconversion rates determined 
(whether normally distributed or not), the next step in the error 
propagation is to determine the fit to the Arrhenius equation.  Two 
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methods of fitting are considered; with all error estimates 
determined using a Monte-Carlo simulation: a linear, least-squares 
fit to the logarithmic form of the Arrhenius equation; and a nonlinear 
least-squares fit using the exponential form of the Arrhenius 
equation 5,8. 

Once a distribution of rates is determined for the behavior at room 
temperature, the probability of passing at a given time or the 
uncertainty interval around the mean predicted shelf-life can be 
determined. In the present paper, this was done in two ways: 
assuming that the distribution is sufficiently normal and computing 
probabilities from the normal distribution, and determining the 
cumulative probability distribution (CPD) from the actual distribution 
and computing probabilities from that distribution. 

METHODS 

Degradant Distributions. Degradant distributions were calculated in 
three ways: fixed standard deviation (fixed), relative standard 
deviation (RSD), and RSD bounded by the limit of detection (LOD). 
The fixed method used a standard deviation of 0.02% for each 
degradant value. The RSD method used 10% of the degradant 
value as the standard deviation. The RSD bounded by the LOD 
method used the larger of the RSD or 0.02% (LOD) for the standard 
deviation. For stochastic calculations, the distribution of degradant 
was represented by a normal distribution of 10,000 points with a 
mean of the provided degradant value and a standard deviation 
calculated by one of the listed methods. For non-stochastic 
calculations, the distribution was represented by values at plus or 
minus one standard deviation from the provided degradant value. 

Stochastic Isoconversion Calculations. A matrix of the degradant 
values was generated from the degradant distributions calculated as 
described above. This provided a matrix of n x 10000 values where 
n was the number of time points. The time values were assumed to 
have no error. A linear least squares fit was then done with the 
degradant values as the dependent and time as the independent 
variables. This provided a set of 10000 coefficients, which were then 
used to calculate the distribution of isoconversion times at the given 
specification limit (the specification limit divided by the slope of the 
fit line). 

Non-stochastic Isoconversion Calculations. A matrix of the 
degradant values was determined by generating the 2n permutations 
of plus and minus one standard deviation of the degradant at each 
time point. A linear least squares fit was done to obtain a set of 2n 
coefficients. These coefficients were then used to solve for either 
the distribution in degradant (intersection with the zero-error 
isoconversion time) or isoconversion (intersection with the 
specification limit). 

Extrema Isoconversion Calculations. The extrema method repeated 
the non-stochastic isoconversion calculations to produce the 
distributions of degradant or isoconversion. Rather than use the full 
distribution, a standard deviation was calculated. For isoconversion, 
this is the mean isoconversion time minus the minimum value of the 
isoconversion distribution. For degradant, this is the maximum value 
of the degradant distribution minus the specification limit. These 
values were then converted to normal distributions in isoconversion 
or degradant (using the mean isoconversion or the specification limit 
as the mean, respectively). 

Linear Shelf-life Calculations. The distribution in rates was 
calculated either using an isoconversion distribution or a degradant 
distribution. The rates were obtained from the isoconversion 
distribution by dividing the specification limit by the isoconversion 
distribution. The rates were obtained from the degradant distribution 
by dividing the degradant distribution by the mean isoconversion 
time. The Arrhenius parameters were then calculated from a linear 
least-squares fit of the linear form of the equation (Equation 3). 

݈݊݇ = ܣ݈݊ − ாೌ

ோ

ଵ

்
                             (3) 

The rate at 25°C was calculated from this equation and converted 
to a shelf-life by dividing the specification limit by the rate. 

Non-linear Shelf-life Calculations. The distribution in rates was 
calculated in the same manner as for the linear shelf-life 
calculations. The Arrhenius parameters were then calculated from a 
non-linear least-squares fit of the equation (Equation 4). 

݇ = ି݁ܣ
ಶೌ
ೃ

ቀభ
೅

ቁ                                  (4) 

The rate at 25°C was calculated from this equation and converted 
to a shelf-life by dividing the specification limit by the rate. 

Cumulative Probability Estimates. Estimates of the value of a 
distribution at 15.86553%, 50% and 84.13447% confidence 
(corresponding to +1 SD, the median and -1 SD of a normal 
distribution) were calculated by sorting the distribution values and 
returning the value at the appropriate points. Where the exact value 
fell between two points, a weighted average of the two closest 
values was used.  

All calculations were done using the R statistical package11. Normal 
distributions were determined using the function rnorm. Linear fits 
were determined using the function lm. Non-linear fits were 
determined using the function nls. An initial guess for the nls function 
was generated using a linear fit of the data (lm). Histograms were 
generated using the function hist. 
 
RESULTS AND DISCUSSION 

I. Isoconversion Error 

While Equations 1 and 2 provide closed forms for calculating the 
confidence and regression intervals, the situation is more 
complicated for real stability studies. Degradant values are typically 
measured at just a few time points, and the measured standard 
deviation at each point is generally not the same.  The methods 
outlined above were evaluated for handling these more complex 
situations.  

In the simplest case, three time points are used that exactly follow 
zero-order kinetics (0, 0; 5, 0.2; 10 days, 0.40% degradant) with the 
error distribution assumed to be the same at each point (standard 
deviation of 0.02%).  We can calculate the isoconversion error bars 
using the five methods described previously, the confidence interval 
(CI) and regression interval (RI) from the formulae shown earlier 
(Eqs. 1-2), and using stochastic, non-stochastic and extrema 
methods and sampling the degradant distributions. The results of 
these calculations are shown in Table 1 for both the interpolation 
region (at 5 days) and extrapolation region (40 days) for 
comparison. As expected, the CI calculated by the formula, the 
stochastic and non-stochastic methods produce the same results 
(within the limits of the sample size of the stochastic method). The 
CI at the isoconversion time produces an uncertainty in the value 
that is considerably less than the actual measured uncertainty at 
that point.  This argues for use of the RI as the more appropriate 
and more conservative indication of the uncertainty.  Unfortunately, 
calculation of the RI is complex when one cannot assume the same 
standard deviation at all points.  Also, the RI will have larger 
estimates of the error at the other measured points (0 and 10 days) 
than was entered. One might thus also consider taking the larger of 
the standard deviation and the confidence interval, which has the 
property of providing an estimate close to the entered values in the 
interpolation region of the fit and an estimate close to the CI in the 
extrapolation region. The extrema method is a variation of this idea. 
As can be seen in the table, the extrema method provides results 
that are closer to the RI in the interpolation region than the other 
methods.  In the extrapolation region, the extrema method is more 
conservative than the other methods and more conservative than 
the RI.  This conservative estimation of extrapolated prediction 
intervals will be important when the potential for non-linearity in the 
results is considered.  
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Table 1   

Using a fixed standard deviation of 0.02% with perfect linear 
data (0, 0.00; 5, 0.20; 10 days, 0.40% degradant), prediction 
intervals for the degradant level at interpolated and 
extrapolated conditions are calculated using different 
methodologies. 

We next examine the same data set, but add the more realistic 
assumptions of either a fixed RSD, or an RSD with a minimum error 
equal to the LOD.  In these cases, we cannot readily calculate either 
the CI or RI by equations 1 and 2.  The results using the remaining 
methods are shown in Table 2.  As seen in the table, several 
observations can be made. In all three methods, the impact of the 
minimum error is significant.  This emphasizes the importance of 
including this term in any calculations. If no minimum error is 
assumed, the extrapolation error bars are similar for all three 
methods.  When a minimum error is assumed, only the extrema 
method provides an interpolated error bar which is greater than this 
minimum error.  This means that with the stochastic and non-
stochastic calculations, the error bar dips below the LOD, which 
would seem hard to justify scientifically. 

Table 2   

Using perfect linear data (0, 0.00; 5, 0.20; 10 days, 0.40% 
degradant), prediction intervals for the degradant level at 
interpolated and extrapolated conditions are calculated using 
different methodologies.  In this case, the standard deviation at 
each measured point is either assumed to be a constant 
percentage (relative standard deviation of 10%), or assumed to 
be a constant percentage (relative standard deviation of 10%) 
with a minimum error of either 0.0% or 0.02%, the latter 
corresponding to an assumed limit of detection for the 
degradant. 

In cases where the degradation data do not perfectly fit the 
regression line, these methods yield the same estimated error as 
when the data are a perfect fit.  There can be circumstances when 
this means that the fitted value at a measured time point will not 
overlap the standard deviation at that point.  This can be interpreted 
to mean that either the model used to fit the data is not correct or 
that the estimation of the standard deviation at that point is not 
correct.  While this potential issue can be visually identified in graphs 
of the data (with error bars) when the measured data extend to the 
specification limit, the situation can be difficult to recognize in 
situations where the specification limit is only reached by 

extrapolation.  As an example of this situation, consider the case 
where a primary degradant degrades to secondary products.  With 
exact data based on the rate constants (k1 = 0.000113%/d and, k2 = 
0.011250%/d), the primary degradant will curve [1].  A linear fit to 
the data is by all accounts quite good (R2 = 0.998), yet provides an 
estimation of the mean isoconversion time equal to 51.6 days 
compared to the true value of 62.0 days (k of 0.0097%/d versus the 
true k of 0.0081%/d).  The inability of simple methods to distinguish 
a true linear behavior from one that only appears linear is one of the 
reasons that designing experiments to provide degradant levels at 
the specification limit is important for accuracy.  Nonetheless, there 
will undoubtedly be situations where some or all of the accelerated 
conditions require extrapolation to estimate isoconversion. The 
confidence of the predictions should therefore take some account of 
the potential for the model used for fitting the data (e.g., linear) being 
in error, especially when there is significant extrapolation.  It is 
worthwhile to examine the above example to see which error bar 
estimates include the true value within the uncertainty interval.  
These calculations are shown in Table 3.  As seen in the table, only 
the extrema method provides an uncertainty estimate which is near 
the true rate at one standard deviation from the mean. 

Table 3   

Method Mean Rate (%/d) 
Standard Deviation 
(%/d) 

Stochastic 9.67 X 10-3 0.94 X 10-3 
Non-
Stochastic 

9.68 X 10-3 0.95 X 10-3 

Extrema 9.69 X 10-3 1.46 X 10-3 
Assuming a primary degradant that subsequently undergoes 
secondary degradation (k1 = 0.000113%/d and, k2 = 0.011250%/d 
at 50°C, Ea = 25.0 kcal/mol; time points at 0, 3, 7, 14 and 28 days), 
prediction intervals for the degradant formation rate at a 
specification limit of 0.50% are calculated assuming a relative 
standard deviation of 10% with a minimum error equal to the 
the limit of detection (0.02%).   The true rate is 8.1 X 10-3%/d, 
which means that only the extrema method includes the true 
rate within approximately one standard deviation. 

The final issue to be addressed with respect to the precision of the 
isoconversion estimation is the distribution.  While it is assumed that 
there is a normal distribution of the measured degradant (potency) 
levels at each time point, this is not necessarily true of the 
isoconversion times. In order to determine a distribution in rates and 
shelf-life at ambient conditions, one must propagate a distribution to 
the Arrhenius calculations. The extrema method provides a single 
value as an estimate of the uncertainty of the isoconversion time 
and %degradant at the mean isoconversion time.  Two methods 
were considered for generating distributions from this estimate. 
While the distribution in isoconversion times will generally not be 
normal, the distribution will be nearly normal when the values are a 
sufficient number of standard deviations from zero. One option is to 
assume the isoconversion distribution will be sufficiently normal and 
generate a distribution using the mean estimate of the isoconversion 
and the determined error estimate as the standard deviation.  
Another option is to take advantage of the normality of the degradant 
levels by defining a degradant distribution at the mean estimate of 
the isoconversion time. This distribution in degradant levels can be 
used to estimate the distribution in isoconversion rates (dividing the 
degradant distribution by the mean isoconversion time). It should be 
noted that the relation that we really want is between isoconversion 
at accelerated conditions and isoconversion at ambient conditions. 
For convenience this is converted into a rate by using the 
specification limit divided by the isoconversion time. If we use the 
degradant distribution at the mean isoconversion time directly to 
calculate the rate (degradant distribution divided by mean 
isoconversion time), this approximates, but is not identical to the 
rates calculated from the isoconversion time distribution itself. The 
rate distributions from the true isoconversion distribution and 
approximated from the degradant distribution will diverge as the rate 
decreases. 

Additional complexity arises for these low rate conditions. For 
example, the assumption of normality of the degradant distribution 

Calculation 
Method 

5-Days (Interpolation) 40-Days (Extrapolation) 

Formula 
Regression 
Interval 

0.0231% 0.1017% 

Formula 
Confidence 
Interval 

0.0115% 0.0997% 

Stochastic 0.0116% 0.0989% 

Non-
Stochastic 

0.0115% 0.0997% 

Extrema 0.0200% 0.1467% 

Calculation 
Method 

Minimum Error 5-Days 
(Interpolation) 

40-Days 
(Extrapolation) 

Stochastic 0.00% 0.0147% 0.1524% 

0.02% 0.0163% 0.1655% 

Non-
Stochastic 

0.00% 0.0149% 0.1535% 

0.02% 0.0163% 0.1660% 

Extrema 0.00% 0.0200% 0.1600% 

0.02% 0.0267% 0.2233% 
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results in negative values of degradant levels.  Since the distribution 
now includes zero, there will be a discontinuity in the reciprocal of 
the degradant distribution; i.e., it will include an infinite isoconversion 
time.  Calculations in this paper have been done assuming rates that 
are sufficiently high to avoid many of the added statistical and 
scientific complexity required to handle cases when there is very 
little change in measured degradant levels with respect to the error 
bars. 

II. Arrhenius Fitting Error 

Once we have a set of isoconversion rates and their corresponding 
distributions at different temperatures (kisoT2), we can proceed to 
estimate isoconversion rates at ambient temperature (kisoT1, where 
the shelf-life is the specification limit divided by kisoT1) using the 
Arrhenius equation, as described either in Equation 5 or 6 (Ea is the 
activation energy, A is the collision frequency, and R is the gas 
constant). 

݇௜௦௢೅ଵ
= ாೌି݁ܣ ோሺଵ మ்⁄ ሻ⁄  (5) 

݇௜௦௢೅ଵ
= ݇௜௦௢೅ ଶ

݁ିாೌ ோሺଵ భ்⁄ ିଵ మ்⁄ ሻ⁄  (6) 
 

 

Equation 5 represents a standard form of the Arrhenius equation 
with the pre-exponential collision frequency term A.  Equation 6 
avoids solving for the collision frequency by relating the rate at an 
elevated temperature to that at each of the accelerated 
temperatures5.  While it may be tempting to treat each measured 
degradant point as an independent rate value in the overall fitting 
(as was employed in early literature5), this approach is intrinsically 
inaccurate for the general case of non-simple kinetics1. As an 
example of the issue, consider the case where one has only two 
temperatures with many time points far from isoconversion.  Using 
each independent point to calculate rates, these points would 
contribute directly to an overall Arrhenius fitting. If the assumption of 
that rate form were in error (usually assumed to be zero or first 
order), the overall resulting fit would be erroneous.  To make matters 
worse, because many points were used, the error bars would be 
small around the wrong projected shelf-life. With the isoconversion 
approach, the number of points alone would not make the final 
precision high if those points do not provide a precise estimate of 
the isoconversion.  In this case, the points far from isoconversion 
will still have a large error bar due to the extrapolation.  
Isoconversion will in general provide better accuracy, but greater 
error bars than a point estimate approach, and therefore is more 
appropriate for making critical stability-related decisions.   

Another difference in this work versus the earlier work5 is our focus 
on the distribution of rates (Equations 5, 6) rather than shelf-lives.  
This is useful in order to handle situations where there are changes 
in rates over time, such as when RH changes with time (permeable 
packaging [3]), or when a drug product experiences an excursion 
during shipping or handling. 

Equations 5 and 6 can be solved either in exponential or linearized 
forms.  If three or more temperatures are used, the estimation of the 
uncertainty will be different between the two fitting methods. If one 
had perfect data (i.e., where a line could be fit through three 
temperature points exactly), the point estimate of the shelf-life would 
be identical using either method. Estimating an uncertainty interval 
requires sampling points from the distribution in rates. Even when 
the regression line is a perfect fit, the sampled points will not 
generate perfect fit lines. A least-squares fit minimizes the square 
root of the sum of the squares of the difference between the actual 
and computed value. For the linear fit, the difference that is being 
minimized is a difference in ln k. For the non-linear fit, the difference 
is in k. This will affect which best fit line is chosen and ultimately the 
distribution of values used to estimate the uncertainty. 

In a series of calculated experiments described below, we examine 
two of the approaches for determining the error bars for the 

isoconversion rates described above: a normal isoconversion 
distribution (the mean is the zero-error isoconversion value, and the 
standard deviation is from the extrema method) and a normal 
degradant distribution (the mean is the specification limit, and the 
standard deviation is determined from the extrema method).  In a 
plot of degradant versus time, the former case is normalized about 
the x-axis, and the latter case is normalized about the y-axis.  For 
both cases, differences between fitting the linear and non-linear 
forms of the Arrhenius equation are calculated. 

The first test case uses only a single time point with a measured 
degradant point (0.02% fixed error bar) and the zero time point (with 
zero uncertainty) at two temperatures (60 and 70°C) with an 
activation energy of 25 kcal/mol (104.7 kJ/mol). The degradant 
values at 10 days are 0.2000% and 0.6015%, at 60°C and 70°C, 
respectively. This results in a value for ln A of 33.87 and a shelf-life 
at 25°C of 2.31 years.  Only the linearized Arrhenius equation was 
used in this example, since both linear and non-linear methods will 
give the same results when only two temperature points are used.  
Using the two methods described above, the distribution of 
isoconversion values and corresponding predicted shelf-lives were 
calculated using a cumulative distribution function (CDF), with 
results shown in Table 4.  The distribution in isoconversion values 
is nearly normal.  The distribution of shelf-life values is not, as can 
be seen by the difference between the mean and median values. As 
expected, using the median produces values closer to the zero-error 
shelf-life. From the distribution in rates (not shown), a probability of 
passing can be determined at any given time; however, the 
distribution cannot be assumed to be normal and probabilities need 
to be determined from the CDF to accurately reflect the probability 
of passing.  
Table 5 shows the case where the zero time value also has an 
uncertainty of 0.02% (LOD) associated with it (other values are the 
same as in the previous experiment). In this case, the standard 
deviation at 60°C remains close to that without the zero-point error, 
despite the additional uncertainty. The values calculated from both 
methods remain similar to each other.  For these first two examples, 
the median in either case is close to the true value.  While the two 
methods differ in their results, there is no over-riding reason for 
selection of one over the other; both provide reasonable estimations 
of the uncertainty in shelf-life at ambient conditions.  Again, it is clear 
that the shelf-life distribution with either method is not normal and 
supports use of a CDF to determine the probability that the 
specification limit will not be exceeded at a given time. 
When a third temperature is included, the linear least squares and 
non-linear least squares fit of the Arrhenius equation will give 
different uncertainty estimates.  In applying these methods, the 
distribution in both k and ln k are assumed to be sufficiently normal 
to apply a least-squares fitting procedure. Using three temperatures 
(60, 70, 80°C) and a constant 10%RSD with a 0.02% LOD the 
distribution in rates in shown in Figure 2 with the results summarized 
in Table 6.  In all cases, the distributions in shelf-life values are not 
normal (as illustrated by the significant difference between the mean 
and median), with the median being very close to the actual value.  
From these calculations, it remains difficult to distinguish between 
the two methods for estimating the error in the isoconversion values. 
With non-linear fitting, the error bars become significantly larger.  
This occurs because the degradant rates are much higher at higher 
temperatures. A small change in an absolute rate at low temperature 
will not affect the least-squares sum very much, but will result in a 
large percentage error in the prediction of the rate. The high 
temperature values are effectively fit more tightly resulting in larger 
intervals at ambient temperature. The logarithmic fitting tends to 
compress these values effectively giving more weight to the lower 
temperature values than with the non-linear fitting.  It is certainly 
possible to use some form of weighting for the non-linear least-
squares procedure.  Ultimately, however, this would bring the results 
from a much more complex calculation into line with those achieved 
by the simpler linear fitting process: applying weighting schemes to 
the non-linear fit would just reproduce the linear fit at higher 
computational cost.  Another issue to consider when applying non-
linear fitting is that when there are any deviations from ideal 
Arrhenius behavior (e.g., change in mechanism with temperature), 
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the points that would make any such deviation most likely to be 
inaccurate at room temperature will be weighted most heavily.  This 
consideration also favors using the linear fitting. 
The final case to consider is a complex kinetics example of 
secondary degradation.  In this case, we compare the same 
methodologies (assuming the most likely scenario of a fixed RSD 
with a minimum LOD) where some of the conditions more accurately 
reflect the true isoconversion values than other conditions.  The 
results of these calculations are shown in Table 7.  The table shows 
results with two different specification limits.  With the larger 
specification limit, some of the conditions require extrapolations.  
The result is that the predictions are not as accurate.  What is 
reassuring, however, is that in spite of this, the fitting still gives 
predictions that include the correct values within one standard 
deviation. 
 
CONCLUSIONS 

A two-step process of first estimating the isoconversion distribution 
at different conditions, then using the rates derived from this 
distribution to fit the Arrhenius equation was employed to determine 
uncertainty intervals for ambient shelf-life.  The intermediate 
calculation of isoconversion is required on scientific grounds, as it 
produces a more accurate estimate of shelf-life.  As a result of this 
requirement, different methods of producing isoconversion 
distributions were evaluated including stochastic, non-stochastic 
and extrema methods.  While there is no objective value to indicate 
which method is correct, each method was compared to the 
regression interval (RI) and the results of cases where fitting 
involves complex kinetics.  An extrema method for estimating error 
in the isoconversion times (times to hit the specification limit) was 
found to give results in reasonable agreement with the regression 
interval (RI) in situations where the RI could be calculated (constant, 
fixed standard deviation, SD), yet allow for extension of calculations 
to include the more realistic situation of a constant relative standard 
deviation (RSD) with a minimum standard deviation equal to the limit 
of detection where the RI could not be directly determined.  This 
method was used either to calculate a distribution of isoconversion 
times (times to hit the specification limit) or a distribution of 
degradant levels (values around the “true” isoconversion time).  
Based on the present evaluation, there is no over-riding reason to 
select either option, with the differentiation to be determined based 
on cases where the degradant levels are as low as the standard 
deviation.  Linear and non-linear least-squares fitting of the 

Arrhenius equation were also evaluated. Fitting the non-linear form 
of the Arrhenius equation inherently places more weighting on high 
temperature conditions, resulting in larger estimated uncertainty 
when extrapolating to ambient conditions.  Since the non-linear 
fitting is also more computationally challenging and more likely to be 
inaccurate when there are deviations from ideal Arrhenius behavior, 
use of the linear form of the Arrhenius equation is recommended.  
Distributions of uncertainty intervals show that in many cases, even 
when a normal distribution of isoconversion values are used, a 
normal distribution of ambient projected rates or shelf-life estimates 
will not generally be observed. 

1. Waterman KC, Swanson JT, Lippold BL. A scientific and statistical 
analysis of accelerated aging for pharmaceuticals part 1: accuracy of 
fitting methods. J. Pharm. Sci. 2014; 103(10):3000-3006. DOI: 
10.1002/jps.24075. 

2. International Conference on Harmonisation of Technical Requirements 
for Registration of Pharmaceuticals for Human Use: Harmonised 
Tripartite Guideline, Stability testing of new drug substances and 
products Q1A(R2), 6 February 2003. 

3. Waterman KC, MacDonald BC. Package selection for moisture 
protection for solid, oral drug products. J. Pharm. Sci. 2010; 99:4437-
4452. DOI: 10.1002/jps.22161. 

4. Porterfield RI, Capone, JJ. Application of kinetic models and Arrhenius 
methods to product stability evaluation. Med. Device Diag. Ind. 1984: 
45-50. 

5. King SP, Fung H, Kung M. Statistical prediction of drug stability based 
on nonlinear parameter estimation. J. Pharm. Sci. 1984; 73:657-662. 
DOI: 10.1002/jps.2600730517. 

6. Sundberg R. Statistical aspects on fitting the Arrhenius equation. 
Chemometrics Int. Lab. Systems 1998; 41:249-252. 

7. Gil-Alegre ME, Bernabeu JA, Camacho MA, Torres-Suarez AI. 
Statistical evaluation for stability studies under stress storage 
conditions. Il Farmaco 2001; 56:877-883. 

8. Shimizu Y, Tamura T, Ono M, Kasai O, Nakajima T. Application of 
nonlinear fitting and selection of the most fitted equation by AIC in 
stability test of pharmaceutical ingredients. Drug Dev. Ind. Pharm. 2002; 
28(8):931-937. DOI: 10.1081/DDC-120006425. 

9. Huntsberger DV, Billingsley P. 1977. Elements of Statistical Inference, 
4th Edition. London: Allyn & Bacon, Inc. p. 275. 

10. Waterman KC, Carella AJ, Gumkowski MJ, Lukulay P, MacDonald BC, 
Roy MC, Shamblin SL. Improved protocol and data analysis for 
accelerated shelf-life estimation of solid dosage forms. Pharm. 
Research 2007; 24(4):780-790. DOI: 10.1007/s11095-006-9201-4. 

11. R Core Team (2013). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 
ISBN 3-900051-07-0, URL http://www.R-project.org/

 

  



7 
 

 

Table 4 

Comparison of two shelf-life prediction methods based on two-temperature accelerated aging: a distribution of isoconversion times (intercepts with the 
specification limit); and a normalized distribution in degradant levels where the extrema lines intersect the time for the regression fit to the specification 
limit. The degradation is based on a single time point at 10 days for both temperatures (Ea = 25.0 kcal/mol) with a 10% relative standard deviation at those 
points (0 standard deviation at the origin). The true shelf-life at 25°C is 2.31 years.  a Cumulative distribution function.  b Values for mean and standard 
deviation (σ) calculated assuming a normal distribution.  c Time to the indicated percent area under the curve based on the CDF. 

 
 
Table 5 
 

 Isoconversion time distribution Normalized degradant levels at zero-error isoconversion time 

CDFa Normalb CDFa Normalb 

15.9%c Median  84.1%c Mean  σ  15.9%c Median  84.1%c Mean  σ 

60°C (isoconversion, days) 9.08 
10.00 

11.09 
10.10 

1.07 9.09 
10.00 

11.07 
10.09 1.05 

70°C(isoconversion, days) 3.07 
3.32 

3.57 
3.32 

0.25 3.09 
3.32 

3.59 
3.34 0.26 

ln A 29.88 
33.98 

38.48 
34.17 

4.32 29.68 33.83 38.17 
33.93 4.26 

Ea (kcal/mol) 22.31 25.07 28.10 25.20 2.91 22.18 24.97 27.90 25.04 2.87 

25°C Shelf-life (yrs) 1.33 2.35 4.37  2.92 2.22 1.30 2.29 4.22 2.81 1.99 

 
Comparison of two shelf-life prediction methods based on two-temperature accelerated aging: a distribution of isoconversion times (intercepts with the 
specification limit); and a normalized distribution in degradant levels where the extrema lines intersect the time for the regression fit to the specification 
limit. The degradation is based on a single time point at 10 days for both temperatures (Ea = 25.0 kcal/mol) with a 10% relative standard deviation at those 
points (0.02% standard deviation minimum). The true shelf-life at 25°C is 2.31 years. a Cumulative distribution function. b Values for mean and standard 
deviation (σ) calculated assuming a normal distribution. c Time to the indicated percent area under the curve based on the CDF. 
 
 
 
 
Table 6 

 
Comparison of shelf-life prediction methods based on three-temperature (50, 60, 70°C) accelerated aging: a distribution of isoconversion times 
(intercepts with the specification limit); and a normalized distribution in degradant levels where the extrema lines intersect the time for the regression fit 
to the specification limit. Both linear and non-linear methods for fitting the Arrhenius equation were applied.  The degradation is based on a single time 
point at 10 days for each temperature (Ea = 25.0 kcal/mol) with a 10% relative standard deviation at those points (0.02% standard deviation minimum). The 
true shelf-life at 25°C is 2.31 years with a rate of 2.37 X 10-4%/day. a Time to the indicated percent area under the curve based on the cumulative 
distribution function. 

  

 Isoconversion time distribution Normalized degradant levels at zero-error isoconversion time 
CDFa Normalb CDFa Normalb 

 15.9%c Median  84.1%c Mean  σ  15.9%c Median  84.1%c Mean  σ 
60°C (isoconversion, days) 9.1 10.0 11.1 10.1 1.0 9.1 10.0 11.1 10.0 1.0 

70°C (isoconversion, days) 3.2 3.3 3.4 3.3 0.1 3.2 3.3 3.4 3.3 0.1 
ln A 30.5 33.8 37.4 34.0 3.5 30.5 33.8 37.4 34.0 3.5 
Ea (kcal/mol) 22.7 25.0 27.4 25.1 2.4 22.7 25.0 27.4 25.1 2.4 
25°C Shelf-life (yrs) 1.4 2.3 3.9 2.7 1.7 1.4 2.3 3.9 2.7 1.7 

 Isoconversion time distribution Normalized degradant levels at zero-error isoconversion time 

15.9%a Median  84.1%a Mean 15.9%a Median 84.1%a Mean 
Linear Shelf-life (years) at 25°C 1.43 2.31 3.86 2.70 1.35 2.34 3.84 2.61 

Rate at 25°C (10-4%/day) 3.83 2.38 1.42 2.62 4.05 2.34 1.43 2.80 

Non-
linear 

Shelf-life (years) at 25°C 0.90 2.33 7.12 5.41 0.81 2.36 7.48 5.90 
Rate at 25°C (10-4%/day) 6.21 2.35 7.70 3.57 6.74 2.32 0.73 3.92 
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Table 7 
 

 

Comparison of shelf-life prediction uncertainty methods when the degradant formation is not linear; i.e., when the isoconversion times at each 
condition are not exactly determined by the regression lines. In this example, a primary degradant subsequently undergoes secondary 
degradation (k1 = 0.000113%/d and, k2 = 0.011250%/d at 50°C, Ea = 25.0 kcal/mol; time points at 0, 3, 7, 14 and 28 days; using 50, 60, 70°C), 
assuming a relative standard deviation of 10% with a minimum error equal to the the limit of detection (0.02%).  Only the two points that 
bracket the specification limit are used at each condition with distributions using the extrema method (extending the last two points when the 
specification limit is not hit).  In each case, a cumulative distribution function was used to calculate the ambient distributions. 
 

 25°C shelf-life (yrs) calculated using distribution 
in isoconversion times 

25°C shelf-life (yrs) using normalized degradant 
levels at zero-error isoconversion time 

True 25°C shelf-
life (yrs) 

Degradant Specification limit 15.9% Median 84.1% Mean 15.9% Median 84.1% Mean  
Primary 0.2% 1.03 1.37 1.81 1.49 0.98 1.36 1.92 1.45 1.43 

0.5% 2.09 3.16 5.38 4.32 1.94 3.23 5.89 4.21 4.45 

Secondary 0.2% 1.55 2.06 2.76 2.16 1.50 2.07 2.82 2.17 2.02 
0.5% 3.48 4.75 7.12 5.40 2.91 4.70 8.70 6.12 4.01 


