

A Practical Method to Predict Physical Stability of Amorphous Solid Dispersion

> Jean René Authelin SOS conference 2022 6 Philadelphia

> > 09.19.20222

The content of this talk is mostly coming from a 2012 paper

A Practical Method to Predict Physical Stability of Amorphous Solid Dispersions

Stéphanie Greco · Jean-René Authelin · Caroline Leveder · Audrey Segalini

Pharmaceutical research 2012 - 29 (10), 2792-2805

Agenda :

- Amorphous spray dried dispersions a tool to mitigate low solubility of API's
- Physics of glassy (amorphous) state
- Predicting Crystallization kinetics from accelerated studies
- Conclusion

Amorphous Spray Dried Dispersions a tool to mitigate solubility issues

The Spring and Parachute effect

- The amorphous dispersions solubilizes fast : "spring" effect. But it tends to recrystallize
- The polymer inhibits the recrystallization: "parachute " effect
- In vivo, the drug is absorbed by the GI tract before recrystallization take place

Spray dried dispersions boost the BA of amorphous SDD's

Example : impact of formulation on a BCS II candidate BA (rat study). Former Sanofi product

Spray dried solid amorphous particles clearly exhibits the best profile

Some data about SAR spray dried amorphous dispersion

SDD composition:

- HPMCP HP55 80%
- SAR compound 20%

Spray drying and secondary drying processes

SAR was dissolved with HPMCP HP55 in the solvent mixture CH2Cl2/EtOH 95%/5%. The ratio SAR/ HPMCP was 20%/80% and the total solid concentration was 6.2% (all percentages are given in weight ratios). The final solution was atomized with a large pilotscale loop spray-drier supplied by the Drytec company (diameter: 1 m, length: 3 m, gas flow approx. 500 kg/h). Inlet and outlet temperatures were fixed at 95°C and 50°C. A bifluid nozzle was used. After spray drying, the residual solvents (about 3%) were fully removed to well below ICH specifications by drying under vacuum (P~50 mbar)

Amorphous spray dried dispersions : the benefit / risk balance

Predicting API crystallization in amorphous spray dried formulations is a key challenge.

The <u>goal of this work</u>: predict long term physical stability (crystallization) from accelerated studies

Just a little about physics of glassy (amorphous) state

sanofi

Amorphous state is characterized by the absence of long-range order

figure from "Glass-to-crystal transition in a chiral pharmaceutical system" PhD thesis Quentin Viel- available on research Gate

Basic thermodynamics of amorphous systems

•At T_q there is no discontinuity in H,S, V^E(contrary to melting) but change in slope (Cp and dilatation coefficient)→ close to a « second order transition »

•Kauzman pointed out that T_g cannot be lower than T_k (Kauzman Temperature) elsewhere, glass entropy would be lower than crystal and therefore more ordered, which is absurd.

•Rule of thumb : T_{ν} ~ Tq-50 K (often in organic glasses)

Walter Kauzmann, The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chemical Reviews (1948), Vol 43, pg. 219.

The Tool "fictive" temperature

The fictive temperature T_f is the temperature of a glass at equilibrium with the same configuration as the actual solid.

Low quenching or glass relaxation leads to lower fictive temperature.

A. Q. Tool and C. G. Eichlin, "Variations Caused in the Heating Curves of Glass by Heat Treatment," J. Am. Ceram. Soc., 14 [4] 276–308 (1931)

Understanding relaxation processes in amorphous solids

(At least) 2 types of relaxation mechanisms are known in amorphous solids :

 $\underline{\alpha}$ relaxations : slow <u>cooperative</u> relaxations involving many molecules together, linked with the viscosity , and corresponding too deep energy minima. Non-Arrhenius behavior : the characteristic time rends to infinite when T approaches T_{kauzman} . However, below T_g, configuration is frozen and a relaxations have an apparent Arrhenius behavior, with an aging dependent activation energy.

 β relaxations :quick individual motions inside the molecule. Arrhenius behavior with T

Alpha relaxation mode is often (may be not always) the most important for recrystallization (diffusion limited) <u>At low enough T, mobility (α and β) decreases such a way that crystallization and even structural relaxations are very difficult</u>

Molecular Relaxations in amorphous solids

Arrhenius plot of relaxations : the relaxation time τ is plotted against 1/T (kelvin)

Predicting Crystallization kinetics from accelerated studies

Inspiration : chemical degradation kinetics

Chemical reactivity is linked to molecular mobility (alpha relaxations) and follows VFT law (above Tg)

$$R = R_g \cdot \exp\left(\frac{C_1 \cdot (T - T_g)}{C_2 + (T - T_g)}\right)$$

$$Ln(R/R_{g}) = \left(\frac{C_{1}.(T-T_{g})}{C_{2}+(T-T_{g})}\right)$$

 $C2 \gg T-Tg \rightarrow Ln R/Rg linear variation with (T-Tg)$

Good Correlation of Stability with T-Tg (above Tg)

Roy, Pikal, Maloney Int Symp. Dev. Biol. Standard, V 74, p 323 1991- degradation of a lyophilisate antibody

Inspiration: crystallization onset follows Tg evolution with moisture

Schmitt et al. exposed spray dried amorphous lamotrigine mesylate to moisture.

A parallel decrease of Tg and crystallization onset was observed by DSC (hermetic pans). Based on their published data, we calculated that the ratio Tg/Tonset (in K) is approximately constant (0.84–0.87)

Adapted from Schmitt E, Davis CW, Long ST. Moisture-dependent crystallization of amorphous lamotrigine mesylate. J Pharm Sci. 1996;85 (11):1215–9

Experimental protocol

 $T < T_q$: "slow crystallization" (days to weeks)

Samples were stored at various RH (salt solutions in desiccators). Periodic sampling for XRPD – sampling frequency depends on Tg/T ratio

 $T > T_g$: quick crystallization (hours)

Samples were kept monitored in situ in the CRPD (Brücker D5000 equipped with hot stage chamber) at T>Tg, dry N2 sweep, until crystallization is observed

Determination of the time of onset of crystallization

Crystallization time estimation $\approx \frac{1}{2}(t_{nc}+t_c)$; incertitude $\frac{1}{2}(t_c-t_{nc})$

Water sorption isotherm and impact on T_q

Fig. 3 Water sorption measured by VTI for the SAR/HPMCP sample as a function of RH% at the different storage temperatures: 25°C, 40°C and 50°C.

When expressed in function of RH (and not $\mathsf{P}_{\mathsf{H20}}$) the isotherm is mostly temperature independent

Modulated DSC is measured in a sealed pan (to avoid water evaporation) . T_g is identified by a "C_p jump" on the reversible signal.

Water Plasticizing effect

Gordon Taylor equation for Tg

Fox:
$$1/T_{gmix} = w_1/T_{g1} + w_2/T_{g2}$$

Gordon-Taylor/Kelley Bueche

$$T_{g}^{GT} = \frac{w_{dy} T_{g}^{dy} + K w_{H_{2}O} T_{g}^{H_{2}O}}{w_{dy} + K w_{H_{2}O}}$$

$$K = \left(\rho_{dy} \ T_g^{dy}\right) \Big/ \left(\rho_{H_2O} \ T_g^{H_2O}\right)$$

The water impact on T_g is well described by the Gordon Taylor equation (better than Fox)

Results: crystallization time

When the crystallization time results are expressed as a function on 1/T the results appear scattered

When the data are expressed in Tg/T, taking into account the Tg depression by moisture, all data aligned with

Comparison with the α -relaxation theory

When the data are plotted in terms of Tg/T (including all RH data) all points align on a single graph, exhibiting 2 regimes

- For T>T_g , it is $T_g/T < 1$, the VFT equation is followed
- For T < T_g, it is T_g/T > 1, the AGV equation is followed with a fictive temperature T_f ~0.98 T_g (glass relaxation)

The crystallization kinetics follows the alpha relaxation general behavior, showing that molecular diffusion is probably the limiting step

Prediction of long-term stability

As the model is based on physics, it is possible to extrapolate the 3 months data (Tg/< 1.1) . Long term data (Tg/T >1.1) were compared to the model established and fit very welle the model except 40C/60% RH where no crystallization was observed at 570 d (predicted interval 287-555)

Table VIII	Extrapolated mean crystallization time calculated from Eq. 14 and compared to experimental values						
Storage T (°C)	Storage RH (%)	T _g /T	Experimental t _{oc} (days)	Predicted t _{oc} (days)	Calculated t _m (days) 95% lower limit	Calculated t _m (days) 95% upper limit	In the 95% prediction interval
23	100	1.101	105	130	83	199	Yes (-19%)
40	60	1.131	>570	287	150	555	No (>+100%)
23	80	1.142	315	385	185	814	Yes (-16%)
23	75	1.152	504	506	224	1151	Yes (-0.4%)

Design space

A design space can be built: on iso Tg/T lines the crystallization time is constant . It allows to design packaging/storage conditions. To get 2 years stability at room temperature, the relative humidity should be < 40% (use of desiccants recommended)

Would the ASAP model work ?

ASAP model : we assume $t_{crys} = A \cdot \exp\left(\frac{E}{RT} \cdot \left(\frac{1}{T} - \frac{1}{Tref}\right) \cdot \exp\left(-B \cdot (RH - RHref)\right)\right)$

Yes ! Although empirical ASAP model would have fit the data ! Can be explained by maths : ASAP empirical expression may be considered as a first order approximation of the rigorous model

Conclusion

- Kinetics of recrystallization of the API in a spray dried dispersions is governed by α -relaxations and the Tg/T ratio, considering the plasticizing effect of moisture
- Long term predictions can be performed based on 3 months accelerated data
- A design space for packaging can be proposed
- Finally, ASAP like modelling would have worked as well ! ASAP empirically modiofied Arrhenius equation approximates well the complete model

Thank you : questions ?

• Back up slides : more scientific details

ightarrow

Free volume theory of the glass transition (Flory)

Free volume theory ctd

Above Tg, the free volume increases $v_{\text{free}} = \alpha . v_{\text{m}}(\text{T-T}^{\circ})$ T>T° T° close to T Kauzman (v_{m} :molecular volume, α : dilatation cste)

The diffusion coefficient incraeses with the free volume according

$$D = D^{\circ}.\exp(-\gamma v^*/v_f) \longrightarrow D = D^{\circ}.\exp(\frac{-\gamma v^*}{v_m.\alpha.(T-T^{\circ})})$$

The viscosity varies inversely to diffusion coefficient (Einstein law)

$$\frac{1}{\mu} = \frac{1}{\mu^{\circ}} . \exp(\frac{-\gamma v^*}{\alpha . v_m . (T - T^{\circ})})$$

Williams Landel Ferry law First experimentally observed

An alternative theory of Glass transition Adam Gibbs model

During cooling, molecular motions of a supercooled liquid decrease significantly. The structural relaxation time (τ_{α}) increases non-linearly from values of the order of picoseconds up to hundreds of seconds in the vicinity of the glass transition.

According to the Adam-Gibbs model , this slowdown in the molecular dynamics is caused by the decrease in the number of possible system configurations (Sc decreases see Eq II, so the size of the Cooperative Rearranging Regions increases)

This theory as well results in the VFT equation

sanofi

Text and figure from "Glass-to-crystal transition in a chiral pharmaceutical system" PhD thesis Quentin Viel- available on rsearch Gate

Angell Strong/fragile glasses classification: distance from Arrhenius behavior

Fig. 5. The strong-fragile pattern that characterizes the temperature dependence of structural relaxation times of supercooled liquids. The series of curves are generated by Eq. (1) using different D values and give a good reproduction of the pattern that emerges from the "Angell plots" (log τ vs. T_g/T) of many liquids. Strong liquids (e.g., SiO₂) are characterized by large D and quasi-Arrhenius behavior and fragile liquids (e.g., many small-molecule organics) by small D and non-Arrhenius behavior.

For T >Tg , VFT law can be rearranged :

$$\tau_{\alpha} = \tau_{\alpha}^{0} \cdot \exp(\frac{E_{\alpha}^{*}}{T - T^{0}}) = \tau_{\alpha}^{0} \cdot \exp(\frac{-D * T^{\circ}}{T - T^{0}})$$

•For large $D \rightarrow T^{\circ}$ far from Tg and behavior is close to Arrhenius \rightarrow Strong glass

For small $D \rightarrow T^{\circ}$ close to Tg and behavior is far from Arrhenius \rightarrow Fragile glass

Fragility index

A fragility index m can be defined according Angell's classification :

At T = Tg, an apparent activation energy ΔH^{\star} can be measured

a dimension less parameter m =∆H*/(2,303RTg) is defined T° = Tg (1-m_{min}/m), m_{min} =16, D =2,303 (m_{min})²/(m-m_{min}) Small values of m correspond to strong glasses & large values correspond to fragile glasses

Alpha relaxations above T_g

T >Tg

The molecular α -relaxation time τ_{α} is related to the temperature by the Vogel-Tammann-Fulcher (VTF equation:

$$\tau_{\alpha} = \tau_{\alpha 0} \exp\left(\frac{D T_0}{T - T_0}\right) \tag{3} \quad D = \frac{2}{2}$$

where $\tau_{\alpha\theta}$ is the limit for relaxation time at the high temperature limit, and T_{θ} is the temperature where τ becomes infinite. T_{θ} is often taken as the Kauzman temperature and D is a material specific parameter depending on the glass fragility. D is related to the fragility index m (defined in Eq. 4) by Eq. 5.

$$m = \left[\frac{d\log(\tau_{\alpha}(T))}{d(T_g/T)}\right]_{T=T_g}$$
(4)

$$\frac{2.303 \ m_{\min}^2}{m - m_{\min}}$$
 (2.303 is the conversion form \log_{10} to ln) (5

$$\frac{T_0}{T_g} = \left(1 - \frac{m_{\min}}{m}\right)$$

Screen shot from Greco at al. Pharm Res 2012 - 29 (10), 2792-2805

Alpha relaxations below T_g

$T < T_g$

The glassy state below T_g is a non-equilibrium one (33), where the macroscopic configurational entropy remains constant and depends only on the fictive temperature T_f . As a consequence, τ_{α} has Arrhenius-like temperature dependence. The most common relation used to fit the temperature dependence to the relaxation times in this range is the so-called Adam-Gibbs-Vogel (AGV) equation (35):

$$\tau_{\alpha} = \tau_{\alpha 0} \exp\left(\frac{D T_0}{T(1 - T_0/T_f)}\right)$$
(8)

Pikal and co-workers (21) have shown that it is possible to fit experimental measurements of τ above and below T_g (measured by dielectric spectroscopy above T_g and by

calorimetric method below T_g using the same set of values for D and T_0 .

Screen shot from Greco at al. Pharm Res 2012 - 29 (10), 2792-2805

Link between alpha mobilities and crystallization

Crystallization Onset: a-relaxations Relationship

As mentioned in the introduction, several studies (13,20) have related the chemical degradation or the crystallization rate in amorphous systems to the different relaxation times. In order to correlate the onset crystallization time (τ_{oc}) to the α relaxation time we propose to use an equation very close to that already proposed by Bughra *et al.* (13):

$$\log(\tau_{oc}) = \xi \, \log(\tau_{\alpha}) + \log(\tau_{oc}^{0}) \tag{9}$$

where $\xi \leq 1$ is a coupling parameter and τ_{α}^{0} is a constant.

When $T > T_g$, one expects therefore an apparent VTF law for crystallization time, as follows

. .

By fitting experimental values of τ_{oc} one may obtain τ_{oc}^{0} , $D' = \xi D$ and T_{0} .

At $T < T_{g_2}$ the above equation may be modified according to AGV theory to:

$$\log(\tau_{oc}) = \log(\tau_{oc}^{0}) + \frac{1}{\ln(10)} \times \frac{\xi D T_{0}}{T(1 - T_{0}/T_{f})}$$
(11)

Screen shot from Greco at al. Pharm Res 2012 - 29 (10), 2792-2805

Moisture impact

Humidity Effect

When a hygroscopic amorphous solid is exposed to humidity, T_g usually rapidly decreases. However it has been shown that D is mostly independent of the moisture (27,36).

Therefore one can assume that, while T_0 , T_g , T_f change will moisture uptake, the ratios T_0/T_g will remain constant, according to Eq. 7, and so will do the T_0/T_f since T_f and T_g are very close. The Eq. 11 can be so rewritten:

$$\ln(\tau_{oc}) = \ln(\tau_{oc}^{0}) + \frac{\xi D T_{0}/T_{g}}{(T/T_{g}) \times (1 - T_{0}/T_{f})}$$
(12)

$$\ln(\tau_{oc}(T, RH)) = \log(\tau_{oc}^{0}) + A \frac{T_g(RH)}{T}$$
(13)

where \boldsymbol{A} is a constant:

$$A = \frac{\xi D T_0 / T_g}{\left(1 - T_0 / T_f\right)}$$
(14)

Therefore the plot of τ_{oc} versus T_g/T is expected to be linear.

Screen shot from Greco at al. Pharm Res 2012 - 29 (10), 2792-2805

ASAP model versus theory

The theoretical expression for crystallization time is : $Ln(\tau_c) = Ln(\tau_{\circ c}) + A \frac{T_g}{T}$

Empirically $T_q(RH){\sim}T_q^{\circ}{\text{-}C*RH}$, where C is a constant

Therefore $Ln(\tau_c) = Ln(\tau_{\circ c}) + A \frac{T_g^{\circ} - C.RH}{T}$

As T varies much less than RH (From 60 to 96°C, it is 333 to 369 K), T variation is only 36/360 ~10%)

 $Ln(\tau_c) \approx Ln(\tau_{\circ c}) + A \frac{T_g^{\circ}}{T} - \frac{C.RH}{<T>}$ where <T> is the mean value of T ~351 K

This expression is the same as ASAP (with inverted signs as $\tau=1/k$). Ea =A* T_go-; B= C/<T>