Accelerated Stability Modeling for Peptides: A Case Study with Bacitracin

Robin Waterman, Jennifer Lewis and Kenneth C. Waterman

FreeThink Technologies, Inc. Branford, CT

Abstract

- Peptides can be used as active pharmaceutical ingredients and as such, share some stability properties of small molecules
- Solid bacitracin and bacitracin Zn were used as model peptides to examine the applicability of the Accelerated Stability Assessment Program (ASAP) to rapidly model shelflife
 - Times to specification limits were determined (isoconversion times) with the complexity of overlapping isoforms
 - The modified Arrhenius equation was applied with appropriate statistics
 - The accelerated model-based predictions for ambient shelf-life and specific degradation product formation matched those observed in real time
 - Modeling provides insight into the impact of zinc complexation

Experimental Design

- Bacitracin (native and Zn complex) was exposed (open) to a range of T, RH (RH controlled by saturated salts) and times
- HPLC analysis was performed on samples to determine loss of active (isoforms A, B1, B2) and formation of degradant (form F)
- Data fit to following equation:

$$\ln(\frac{1}{failure\ time}) = lnA - \frac{E_a}{RT} + B(RH)$$

• 3 and 6 month data collected at lower T's for comparison

Residual graph of fitting for loss of Bacitracin(A) from Zn complex plotted as ln(1/failure time) vs T, RH

Comparison of longterm (squares) and modeling predictions (lines) for level of bacitracin(F) at two conditions

Conclusions

- The Accelerated Stability Assessment Program (ASAP) was successfully applied for the first time to a peptide
- Bacitracin (native and Zn complex) was exposed for up to 21 days from 50-80°C/0-63%RH and both loss of active and formation of degradant were analyzed by HPLC
- \circ Formation of degradant F fit a diffusion model (time^{1/2}) at each condition
- Model fitting to the humidity-corrected Arrhenius equation was good
- Based on fitting, the dramatic stabilization by zinc complexation is due to lower mobility (decreased In A and B) rather than activation energy (E_a)
- Predictions matched long-term data